Vestibular System and Self-Motion
نویسندگان
چکیده
منابع مشابه
Visual Vestibular Interactions for Self Motion Estimation
Accurate perception of self-motion through cluttered environments involves a coordinated set of sensorimotor processes that encode and compare information from visual, vestibular, proprioceptive, motor-corollary, and cognitive inputs. Our goal was to investigate the visual and vestibular cues to the direction of linear self-motion (heading direction). In the vestibular experiment, blindfolded p...
متن کاملThe vestibular system: multimodal integration and encoding of self-motion for motor control.
Understanding how sensory pathways transmit information under natural conditions remains a major goal in neuroscience. The vestibular system plays a vital role in everyday life, contributing to a wide range of functions from reflexes to the highest levels of voluntary behavior. Recent experiments establishing that vestibular (self-motion) processing is inherently multimodal also provide insight...
متن کاملMultimodal integration of self-motion cues in the vestibular system: active versus passive translations.
The ability to keep track of where we are going as we navigate through our environment requires knowledge of our ongoing location and orientation. In response to passively applied motion, the otolith organs of the vestibular system encode changes in the velocity and direction of linear self-motion (i.e., heading). When self-motion is voluntarily generated, proprioceptive and motor efference cop...
متن کاملThe Vestibular System Implements a Linear–Nonlinear Transformation In Order to Encode Self-Motion
Although it is well established that the neural code representing the world changes at each stage of a sensory pathway, the transformations that mediate these changes are not well understood. Here we show that self-motion (i.e. vestibular) sensory information encoded by VIIIth nerve afferents is integrated nonlinearly by post-synaptic central vestibular neurons. This response nonlinearity was c...
متن کاملSelective processing of vestibular reafference during self-generated head motion.
The vestibular sensory apparatus and associated vestibular nuclei are generally thought to encode head-in-space motion. Angular head-in-space velocity is detected by vestibular hair cells that are located within the semicircular canals of the inner ear. In turn, the afferent fibers of the vestibular nerve project to neurons in the vestibular nuclei, which, in head-restrained animals, similarly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Cellular Neuroscience
سال: 2018
ISSN: 1662-5102
DOI: 10.3389/fncel.2018.00456